| Indoor Unit Model | Vitocal 111-S AWBT-M-E-AC 111.B08 F | |--------------------------------------|-------------------------------------| | Outdoor Unit Model | Vitocal 100-S ODU 230V B08 | | Equipped with a supplementary heater | yes | | Heat pump combination heater | yes | Low temperature Average Application Climate conditions | Rated heat output | Prated | 6.4 | kW | |--|-----------------|-----------|----------| | Declared capacity for heating for part load at indoor temperature temperature Tj | e 20 °C an | d outdoor | | | T _i = - 7 °C | Pdh | 6.2 | kW | | T _i = + 2 °C | Pdh | 4.3 | kW | | T _i = + 7 °C | Pdh | 5.1 | kW | | T _i = + 12 °C | Pdh | 6.0 | kW | | T _i = bivalent temperature | Pdh | 5.9 | kW | | T _i = operation limit temperature | Pdh | 5.0 | kW | | T _i = - 15 °C (if TOL < -20 °C) | Pdh | - | kW | | Bivalent temperature | T_{biv} | -8 | °C | | Cycling interval capacity for heating | Pcych | - | kW | | Degradation coefficient | Cdh | 0.99 | | | Power consumption in modes other than active mode | | | | | Off mode | P OFF | 0.015 | kW | | Thermostat-off mode | P _{TO} | 0.000 | kW | | Standby mode | PSB | 0.000 | kW | | Crankcase heater mode | PCK | 0.000 | kW | | Other items | | | | | Capacity control | | variable | | | Sound power level, indoors/outdoors | L _{WA} | 41/64 | dB | | Annual energy consumption | Q_{HE} | 13206 | kWh | | For heat pump combination heater | | | | | Declared load profile | | XL | | | Daily electric consumption | Q elec | 6519 | kWh | | Annual electricity consumption | AEC | 1406 | kWh | | Standby cylinder heat loss | ALU | 1990 | Wh/day | | Standby Cylinder Heat 1055 | | 1990 | , wii/da | | | | | | | Seasonal space heating energy efficiency | η_s | 176 | % | |--|-------------------|-------------|------------------| | Declared coefficient of performance for part load at indoctemperature Tj | or temperature 20 | °C and outo | door | | T _j = - 7 °C | COP _d | 2.7 | | | T _j = + 2 °C | COP_d | 4.3 | | | T _j = + 7 °C | COP _d | 6.2 | | | T _j = + 12 °C | COP _d | 8.9 | | | T _j = bivalent temperature | COP_d | 2.6 | | | T _j = operation limit temperature | COP _d | 2.2 | | | T _j = - 15 °C (if TOL < -20 °C) | COPd | - | | | Operation limit temperature | TOL | -20 | °C | | Cycling interval efficiency | COPcyc | _ | | | Heating water operating limit temperature | WTOL | 55 | °C | | Supplementary heater | | | | | Rated heat output | Psup | 1.4 | k۷ | | Type of energy input | | Electric | | | Rated air flow rate, outdoors | | - | m ³ . | | Application | Medium temperature | | | | |--------------------|--------------------|--------|-----|----| | Climate conditions | Average | | | | | | | | | | | Rated heat output | | Prated | 6.7 | kW | | | | | | | | Rated heat output | | Prated | 6.7 | k۷ | |--|-------------------------|-----------|----------|-----| | Declared capacity for heating for part loa
temperature Tj | d at indoor temperature | 20 °C and | doutdoor | | | T _j = - 7 °C | | Pdh | 5.9 | k۷ | | T _j = - 7 °C
T _j = + 2 °C | | Pdh | 3.6 | k١ | | T = + 7 °C | | Pdh | 6.9 | l h | | Rated heat output | Prated | 6.7 | kW | |--|-----------|-----------|----| | Declared capacity for heating for part load at indoor temperature temperature Tj | 20 °C and | d outdoor | | | T _i = - 7 °C | Pdh | 5.9 | kW | | $T_{j} = -7 ^{\circ}\text{C}$ $T_{j} = +2 ^{\circ}\text{C}$ $T_{j} = +7 ^{\circ}\text{C}$ $T_{j} = +12 ^{\circ}\text{C}$ | Pdh | 3.6 | kW | | T _j = + 7 °C | Pdh | 6.9 | kW | | T _j = + 12 °C | Pdh | 6.7 | kW | | 6.7 | kW | | |---------|----|--| | outdoor | | | | | | | | | | | | 5.9 | kW | | | 3.6 | kW | | | 6.9 | kW | | | 6.7 | kW | | | 5.9 | kW | | | Rated air flow rate, outdoors | | - | m ³ /h | |--|---|------------------------------|----------------------------| | | | | | | Water heating energy efficiency Daily fuel consumption Annual fuel consumption Reference hot water temperature DHW volume accounted for in test | n _{wh}
Q _{fuel}
AFC | 125
-
-
53.1
290 | %
kWh
kWh
°C
I | | Seasonal space heating energy efficiency | η_s | 125% | % | | Declared coefficient of performance for part load at indoor temper
temperature Tj | erature 20 | °C and out | door | | T _j = - 7 °C
T _j = + 2 °C
T _j = + 7 °C
T _j = + 12 °C
T _, = bivalent temperature | COP _d COP _d COP _d COP _d | 2.0
2.9
4.9
7.3 | | | ij braidit temperature | OO, d | 2.0 | | T_i = bivalent temperature Pdh T_j = operation limit temperature Pdh 4.7 T_i = - 15 °C (if TOL < -20 °C) Pdh Bivalent temperature T_{biv} Cycling interval capacity for heating | Degradation coefficient | Cdh | 0.99 | KVV | |---|---|----------------------------------|----------------| | Power consumption in modes other than active mode
Off mode
Thermostat-off mode
Standby mode
Crankcase heater mode | P _{OFF}
P _{TO}
P _{SB}
P _{CK} | 0.015
0.000
0.000
0.000 | kW
kW
kW | | Other items
Capacity control
Sound power level, indoors/outdoors
Annual energy consumption | L _{WA}
Q _{HE} | variable
41/64
13788 | dB
kWh | | | | | | | 1j - + 12 G | COFd 7.3 | | |--|----------------------|---------------------| | T _j = bivalent temperature | COP _d 2.0 | | | T _j = operation limit temperature | COP _d 1.6 | | | T _j = - 15 °C (if TOL < -20 °C) | COP _d - | | | Operation limit temperature | TOL -20 | °C | | Cycling interval efficiency | COPcyc | | | Heating water operating limit temperature | WTOL 55 | _ °c | | Supplementary heater | | | | Rated heat output | Psup 2.0 | kW | | Type of energy input | Electric | | | Rated air flow rate, outdoors | - |] m ³ /h | | | | | | Water heating energy efficiency | η _{wh} 125% | % | | Daily fuel consumption | Q fuel - | kWh | | Annual fuel consumption | AFC | kWh | Contact details: Viessmann Limited, Hortonwood 30, Telford, TF1 7YP, UK For heat pump combination heater Declared load profile Daily electric consumption Standby cylinder heat loss Annual electricity consumption kW kW °C k۱۸/ kWh kWh Wh/day 6519 1406 1990 Q elec AEC Reference hot water temperature DHW volume accounted for in test % °C °C kW kWh 53.1 °C